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constant parameter defined by equation (41), A =

4+f2

optimization function, equation (37)

iteration function, equation (38)

generalized gravitational constant (magnitude of the sum of gravitational and

coordinate system acceleration vectors)

heat transfer coefficient inside the cylinder

heat of fusion

thermal conductivity of the cylinder wall

mass flow rate

mass flow rate (per unit length of cylinder) predicted by Nusselt model
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heat transfer rate (per unit length of half-cylinder)
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vertical distance from the uppermost point on the outer cylinder wall

thickness of the liquid layer

thickness of the liquid layer predicted by Nusselt model

dimensionless heat transfer rate defined by equation (43),
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dimensionless heat transfer rate predicted by Nusselt model, defined by equation (42),

3
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dimensionless liquid film thickness defined by equation (17),

B
A=
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J

dimensionless liquid film thickness at the top of cylinder

dimensionless liquid film thickness predicted by Nusselt model

lim (A3 sintp)limit defined by equation (36), A =¢_r_

lim (A30 sin tp)limit defined by equation (30), ANu =¢__>n

dynamic viscosity of liquid

density of liquid

density of vapor

density difference, defined by equation (6), _ = p - Pv

angle measured between cylinder surface normal and vertical, tp = 0 on top of

cylinder
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dimensionless temperature, defined by equation (31), ;_ - (Tsa t Tb )
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ANALYSIS OF CONDENSATION ON A HORIZONTAL CYLINDER WITH

UNKNOWN WALL TEMPERATURE AND COMPARISON WITH THE

NUSSELT MODEL OF FILM CONDENSATION

Parviz A. Bahrami

Ames Research Center

SUMMARY

Theoretical analysis and numerical computations are performed to set forth a new model of film

condensation on a horizontal cylinder. The model is more general than the well-known Nusselt

model of film condensation and is designed to encompass all the essential features of the Nusselt

model. It is shown that a single parameter, constructed explicitly and without specification of the

cylinder wall temperature, determines the degree of departure from the Nusselt model, which

assumes a known and uniform wall temperature. It is also shown that the Nusselt model is reached

for very small, as well as very large, values of this parameter. In both limiting cases the cylinder wall

temperature assumes a uniform distribution and the Nusselt model is approached. The maximum

deviations between the two models is rather small for cases which are representative of cylinder

dimensions, materials and conditions encountered in practice.

INTRODUCTION

Condensation of saturated vapors on solid surfaces under conditions encountered terrestrially and

during space flight is of great importance in application of heat and mass transfer analyses. The early

heat and mass transfer literature for condensing fluids contains many insightful analysis of the

physics involved, as evident in reference 1. The well known Nusselt model of film condensation on

a horizontal cylinder is perhaps the most important one, owing to its fundamental geometry. It

assumes that a uniform wall temperature distribution in the cylinder prevails. Predictions of the heat

transfer rates are based upon this temperature which is presumed to be known, (ref. 2). However, the

cylinder wall temperature for this problem is generally not known, and one would rather deal with

the bulk temperature of the cooling fluid inside the cylinder. The dynamics of the heat and mass

transfer processes determine the wall temperature distribution and, therefore, the wall temperature

can not be specified a priori, as assumed in the Nusselt model.

The aim of the present analysis is to set forth a new and more complete model of film condensation

on a horizontal cylinder, where no assumptions are made to explicitly specify the wall temperature.

The new model will be compared with the Nusselt model to determine the extent of differences in

the heat and mass transfer predictions for conditions most widely encountered in horizontal cylinder
condensers.



THE ANALYSIS

The velocities in condensing fluids are generally very small such that, the inertial forces may be

ignored in comparison to other forces, Eckert (ref. 3). Furthermore, the governing equations are

distinctly boundary-layer in nature, Schlichting (ref. 4). A balance between the pressure, viscous and

body forces within the condensing film prevails and the pressure within the condensing film is that

of the quiescent saturated vapor away from the cylinder. The thickness of the condensing film is

much smaller than the cylinder radius. Therefore, it is convenient to employ a curvalinear coordinate

system in which the abscissa x lies on the cylinder surface and the ordinate y is perpendicular to and
measured from the surface.

With these assumptions, the Navier-Stokes equation of motion for this problem can be reduced to:

d2u dp

kt dY2 dx t-pgsin q) = 0
(1)

Denoting the distance from the uppermost point on the cylinder directly downwards by z,

z = r0(1- costp) = r0(1- cos x ]r0)
(2)

one may write,

dp _ dp sin tp (3)
dx dz

But, as noted earlier, the pressure within the condensing film is that of the quiescent saturated vapor

away from the cylinder,

dp
dx Pvgsintp (4)

By combining equations (1) and (4),

d2u

g d--_ = -(P- Pv)gsintp
(5)

and denoting the density difference by _,

= P - Pv (6)

equation (5) can be integrated:
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^

-u = Pg sinq)y 2 + cly + c2 (7)
21.t

The no-slip boundary condition at the outer tube wall, u = 0 at y = 0, eliminates the second

integration constant, c 2 . The shear force at the liquid-gas interface is taken to be negligible due to

small viscosity of the vapor relative to that of the liquid, leading to evaluation of the first integration

constant, c 1.

du

-- = 0, y = 5 (8)
dy

' ^

C 1 = - Pg sintp5
Ix

(9)

/u = P___gg_2 sintp [i22_
(10)

The mass flow rate in the condensed layer at any x is:

m p udy- sin  3
0

(11)

so that,

^ 3 sin )
is the incremental increase in the mass flow rate at any x. The heat transfer rate is simply,

dQ = hfgdria (13)

Using the series resistance concept for the fluid layer, the cylinder wall and internal heat transfer,

and assuming that the internal heat transfer coefficient h i is an appropriate mean value, one may

write,

dQ= Tsat - %

lnro

1 _- ri + _5

hiridq) kwdq) krod_P

(14)

By carrying out the differentiation in equation (12) and using equations (13) and (14) we get,
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PPg_I__cos_+_ sin__5/=
3g \ dq))

(Tsa t - T b)ro

roln r°

ro+ ri_
hir i k w k

(15)

The boundary condition is due to the symmetrical film thickness at the top of the of the cylinder, i.e.

d5
-- = 0,q0 = 0 (16)
dq0

Now, by introducing a dimensionless film thickness A

A = 1 (17)

r 3gk(Tsat - Tb)ro )4

and a dimensionless parameter f_,

roln ro 1
k w J _ ppghfg

(18)

equation (15) gives,

3A3 sin q_d-_A+ A4 cosq0 = _
oq0 f_

I+--
A

(19)

Rearranging equation (19) results in a first order nonlinear ordinary differential equation, in a

suitable form for Runge-Kutta numerical integration:

 1(1cos ]dA 3A3 sin q0
dip 1 + --

A

(20)

The boundary condition, equation (16) is transformed into,

dA
--=O,(p=O
d(p

(21)
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which, whenusedin thedifferentialequation(19)gives,

A4=_
I+--

A0

(22)

Here, A 0 denotes the value of A at q0 = 0 and can be evaluated once the parameter _ is specified.

At this point it is apparent from reference 2 that equation (20) is identical to the one obtained from

the Nusselt model, when f_ ---) 0.

Recasting the Nusselt Model in Terms of the Variables of the Present Analysis

In order to make a precise comparison of the predictions of the present model to those of the Nusselt

Model, one must first recast the Nusselt model in terms of the variables of the present model. If a

relationship between T b in the above analysis and Tw in the Nusselt model could be obtained, one

could compare the numerical solutions of equation (20) to the results of the Nusselt model.

Applying the series-resistance concept again,

Q: (Tw-Tb) : 1 /(roTi -Tb)_r°
(23)

lnro ro ln(ro /

1 ri hii _._-ij + kw t, ri)
hiriu kwu

But,

Q = ria_hfg (24)

where, rh n is the mass-flow rate as q0--->_, and by using equation (11),

^

rh n = lim PPg83(_)sintp
_n 31.t

(25)

^

Q= hf_ PPg lim 83(O0)sinqo
3g _-->_

(26)

A limit is imposed since, the mass flow crossing tp = n is zero and not a representative of the
condensed mass flow rate.

Equation (26) can be written in terms of ANu and T w, by noting that in the present model as

k w, hi_oo, T w ---->Tb , a constant and in effect, the Nusselt's model is approached. Therefore, T w

replaces T b for A = ANu.
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3

QNu _. pl_ghfg ) _, _ 3g )¢.->n

1

= k(Tsat qb-+rCQNu 3gkro--_sat - Tw) - Tw) lim (A3usintp)=

(Tw- %)_ro

!(ro/+ro n/ro]
hi_,ri) kw _.ri)

Rearranging,

(Tw-%)_
1 = (Tsat - rw)ANu

/ o+rolnro/ Chiri kw ri ) _,3ghro(Tsat-

(27)

(28)

(29)

Where ANu denotes the limit:

ANu = lim (A3uSinq))
{_----)Tg"

(30)

Using the definition for _ and introducing a dimensionless temperature Z,

(Tsat - Tw)

%- (Tsat--_b)
(31)

one obtains the following equation which will be utilized later in the analysis:

_3
4 a,--_ A

1 - Z = Z _'_ANu

Writing equation (28) in terms of ANu, % and (Tsa t -Tb), one obtains:

3

A 3(. pfig_(3gk(Tsat_Tb)ro I:QNu = NuZ, {"fg 3[.t )_ pl_ghfg

(32)

(33)

Similarly for equation (26), one obtains:
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3

Tit j (34)

where, in tandem with equation (30),

A : lim (A3 sinq0) (35)

We note that comparison of QNu and Q can now be made, once the value of _ is specified and the

integration of equation (20) is carried out.

Numerical Solution

A Runge-Kutta numerical integration technique was used to integrate equation (20) from q0= 0 to

q0= 179.99 ° . This method is designed to approximate the Taylor series method without requiring

explicit definition or evaluations of derivatives beyond the first. The approximation is obtained at

the expense of several evaluations of the function. Reference 5 describes the method in detail and

provides a framework for a subroutine for solving initial value problems of ordinary differential

equations. A modem modification to the classical Runge-Kutta technique has been employed to

control the step size. Since only one solution value is required for calculation of the next, the

method is self-starting. It requires six function evaluations per step. Four of these function values are

combined with one set of coefficients to produce a fourth-order method, and all six values are

combined with another set of coefficients to produce a fifth-order method. Comparison of the two

values yields an error estimate which was used for step size control. The boundary condition at

q0= 0 appears as an initial condition, where integration over a specified interval was performed in
dA •

one or many subintervals. Specification of -- = 0,q0 = 0 is not an essential part of the routine,

dcp dA
however, since the denominator of equation (20) contains a singularity at q0 = 0, -- was set to zero

dq)
at this point. Once _ was specified, A 0 was calculated and the integration was carried out. Local

error of 10 -5 and 10 -8 yielded identical values of A up to the seventh significant digit.

Calculation of A 0

Equation (20) is a quatic equation and in general may possess multiple roots. The roots, however,

may be real or complex conjugates. Real negative roots are not physical and complex roots are not

within the scope of consideration of the present work. Here interest lies with the particular solutions

(i.e., positive real roots) which enable comparison of the present model with the Nusselt model of

film condensation. Inspection of equation (22) reveals that two real and two complex solutions can

be obtained by considering its resolvent cubic equation, as described in reference 6. Furthermore, the

real positive roots are equal. During attempts to integrate equation (20) for f2 > 0, it was discovered
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that A0 had to be specified to a high degree of accuracy to avoid incompatibility between the initial

value and the differential equation. A successive approximation scheme was devised for this purpose

by letting,

and

f(A0) = A +1 -1=0 (36)

A8+l = g(AS) = Aa+A +1-1 (37)

where A8 denotes the n-th approximation to A 0, the function g(AS) is the iteration equation and A

is a constant. Then,

d g(AS)=4A(Aa)3+3Af_(A8)2+l (38)
dA8

d g(A8) ' = 0 one may choose A8 = 1 as a starting trial value, and convergence of the
For dA-----8

successive approximations can be expected.

4A + 3Af_ + 1 = 0 (39)

Therefore,

-1
A- (40)

4+3_

Specification of f2

In order to specify values of f_ which are representative of cylinder dimensions, materials and

conditions encountered in practice, a simple survey was conducted. Cylinder diameters between

0.625 and 1.25 inches and wall thicknesses of 0.045 and 0.065 inches are most commonly used in

terrestrial applications of horizontal tube condensers. The pipe materials are usually admiralty brass

or stainless steel. It was necessary to obtain only approximate or orders of magnitude of various

parameters. Standard correlations of turbulent pipe flow, Eckert (ref. 3), were used to evaluate the

Nusselt number Nu, the cylinder internal heat-transfer coefficient h i and finally, the parameter, f_.

For conditions of atmospheric pressure for saturated water vapor and Reynolds numbers, based on

cylinder diameter, ranging between 104 and 105, various calculations were carried out. A sample of

the results is presented in Table 1 to highlight the expected range of values for f_.
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Table 1.

Re Nu hi W/K-m 2 f2

10,000 104 2.561 3.05

20,000 185 4,558 1.73

30,000 260 6,412 1.24

33240,000 8,181 0.98

50,000 401 9,892 0.82

100,000 726 17,921 0.47

It shouldbenotedthat, thetermin f2 containingkw is oneor two ordersof magnitudesmallerthan
thatcontaininghi .Therefore,hi is thedominatingparameter.

COMPARISON AND DISCUSSION OF THE RESULTS

In order to set forth a precise comparison of the heat transfer predicted by the present model and the

Nusselt model, one may define two new heat transfer rates with the aid of equations (33) and (35) by

denoting,

3

ONu=QNu/hfgPPg/-lIa_k(Tsat-Tb)r°/-43_J _ ppghfg
(41)

and,

3

0 = Q/hfg ppg/-1/3_k(Tsat h.____Tb)ro/-4
\ 3_tJ _. ppg fg

(42)

These heat-transfer rates are dimensionless and are closely related to the liquid film thickness at the

base of the cylinder. As described in the numerical solution section, integration of equation (20),

provided the values of A for parametric values of f_. As noted earlier, for f_ = 0 the Nusselt model

is reached with ANu = 2.53113. Using this value, equation (32) can be employed to obtain the

corresponding values of _, for parametric values of f_. A Summary of the results is presented in

9



Table2 for eightparametricvaluesof f_ from zeroto infinity. Thecorrespondingvaluesof 2 are
alsolistedin thetable.

_
ONu = ANu_4

O=A

(43)

(44)

Table 2.

_ ONu O %difference

0.0 1.000 2.53113 2.53113 0.00

0.5 0.693 1.92249 1.91545 0.36

1.0 0.515 1.53876 1.52224 1.07

1.1 0.486 1.47330 1.46248 0.74

2.0 0.320 1.07960 1.06326 1.26

3.0 0.221 0.81585 0.80991 0.73

4.0 0.165 0.65528 0.65135 0.60

0.000 0.00000 0.00000 0.00

It is apparent that the Nusselt model is in notable agreement with the present analysis. As may be

expected, deviations from the Nusselt model, however small, do appear to exist. The maximum

deviations are of order one percent and correspond to the moderate values of f_ in Table 2. This is

not a fortuitous outcome. The range of values for various parameters were chosen to span two

limiting cases. First, as the values of _ approach zero, the deviations in heat transfer also tend to

vanish. This may be attributed to progressively larger values of h i which tend to dictate T w to

approach T b , a constant. On the other hand, at large values _, h i tends to be small and low heat-

transfer rates are expected. The wall temperature Tw again will assume a constant value, close to

that of the saturated steam. These limits, of course, can be reached by the influence of all variables

contained in _2 and not just h i. In both limiting cases the cylinder wall temperature assumes a

uniform distribution and the Nusselt model is approached. The precision by which the Nusselt model

approximates the present analysis, clearly testifies to the insight often set forth by the old masters.

Much can be learned by careful analysis of their assumptions and methods.
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